

Tsetlin Machine Applications

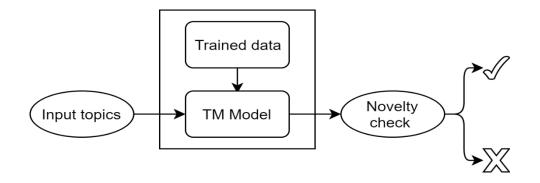
BIMAL BHATTARAI

University of Agder

Novelty in NLP

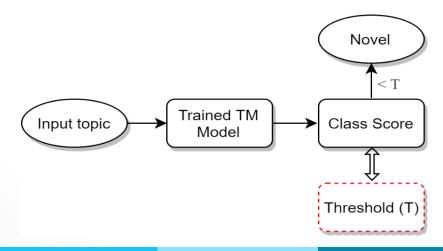
Novelty Detection

Determine if the given input topic is novel or not



Novelty Description

Describe the novelty of the input topic based on the clauses



Example: Novelty Detection

Trained topics: Account and Card queries

Users Queries: Loan (New topic)

Example:

Intent – I have an account in this bank, How can I get a loan?

Answer- (can be anything)

Tsetlin Working:

Example:

Intent – I have an account in this bank, How can I get a loan?

TM Model- IF {(account) and (bank) and (get) and (loan)} then New topic

Novelty Score- Very low

Example: Novelty Description

Sentence: The apple that he ate yesterday was good.

Category- Novel

Sentence: The apple shares decreased over this week.

Category- Not Novel (Known)

■ Different scores for "apple": high for "apple" fruit, low for "apple" company/phone

Results

Novelty Detection

Algorithms	20 Newsgroup	Spooky action author	CMU movie	BBC sports	WOS
LOF	65.3 %	47.94 %	56.68 %	67.88 %	71.08 %
Feature Bagging	65.40 %	48.83 %	57.42 %	64.23 %	69.64 %
HBOS	73.90 %	27.08 %	46.26 %	32.74 %	86.01 %
Isolation Forest	78.50 %	36.18 %	53.36 %	35.93 %	72.43 %
Average KNN	74.30 %	43.61 %	56.78 %	65.69 %	67.98 %
K-Means clustering	81.00 %	61.30 %	49.20 %	47.70 %	41.31 %
One-class SVM	84.30 %	61.50%	67.15 %	92.74 %	77.17 %
TM framework	83.00 %	63.68 %	71.86 %	93.10 %	76.08 %

Table 2: Performance comparison of proposed TM framework with cluster and outlier based novelty detection algorithms.

Novelty Description

Table 2 Relative frequency and score for each word

Known				Novel				
Word	Frequency	Relative frequency	Score	Word	Frequency	Relative frequency	Score	
England	1	0.071	1.070	England	1	0.076	1.070	
Won	1	0.071	2.169	Won	2	0.154	2.169	
Cricket	4	0.28	0.271	Rugby	4	0.307	4.651	
Match	1	0.071	2.169	Match	2	0.154	2.169	
Hit	2	0.142	0.535	Despite	1	0.076	1.15	
Six	4	0.28	0.271	Old	2	0.153	2.31	
Ball	1	0.071	1.070	Ball	1	0.076	1.070	

Problem: Data Representation

> Problem of Polysemy:

Sentence 1: *He sent me a present for my birthday.*

Sentence 2: There were 200 people present at the meeting.

Problem of contextual dilemma:

Sentence: *I am a* _____, *and I am in a class*.

- A) Student
- B) Teacher

TM Representation

Example:

Feature – dog

Deep learning representation (embedding): [0.35, 0.86, -0.36,, -0.21]

TM representation: [canine and loyal and domestic and bark]

TM Feature space: Binary (i.e., [1, 0, 1,, 1])

Practicality:

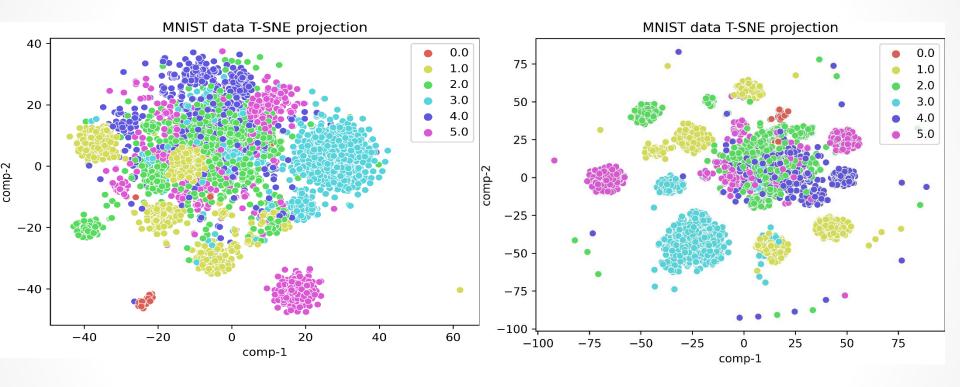
Class: Cancer

Deep learning representation: Embedding *If Noise is present, Prediction can be False*

TM representation: Clauses Captured Features

Noise tolerant, Robust Prediction

Visualization



Result

Models	TREC	MPQA	SUBJ	WebKB	CR	R8
LSTM	87.19	89.43	85.66	85.32	80.06	96.09
BiLSTM	91.0	89.5	92.3	-	_	96.31
CNN-non-static	93.6	89.05	93.4	-	84.3	95.71
CNN-static	92.0	89.06	93.0	-	84.7	94.02
CNN-multichannel	92.2	89.4	93.2	-	85.0	-
DiSAN	94.2	90.1	94.2	-	84.8	-
BERT	97.6	90.66	97.0	79.0	86.58	96.02
TM	91.6	74.55	86.8	91.69	80.55	95.93
TM_{rep}	95.6	87.3	90.1	93.05	83.06	96.84

Table 2: Performance comparison of our model with baseline algorithms. We reproduce the results with the same hyperparameter configurations for all baselines for a fair comparison and report average accuracy across 10 different random seeds.

TABLE III

DOMAIN ADAPTATION PERFORMANCE (ACCURACY %) ON AMAZON REVIEW DATASET.

	S-only	MMD	DANN	CORAL	WDGRL	ACAN	BERT	$\overline{{ m TM}_{rep}}$
$B \rightarrow D$	81.09	82.57	82.07	82.74	83.05	83.45	86.75	84.94
$\mathrm{B} o \mathrm{E}$	75.23	80.95	78.98	82.93	83.28	81.20	82.80	86.21
$\mathrm{B} ightarrow \mathrm{K}$	77.78	83.55	82.76	84.81	85.45	83.05	86.20	87.57
$D \rightarrow B$	76.46	79.93	79.35	80.81	80.72	82.35	81.55	85.06
$D \rightarrow E$	76.24	82.59	81.64	83.49	83.58	82.80	80.60	86.81
$\mathrm{D} o \mathrm{K}$	79.68	84.15	83.41	85.35	86.24	78.60	83.00	87.75
$E \rightarrow B$	73.37	75.72	75.95	76.91	77.22	79.75	81.85	84.83
$E \rightarrow D$	73.79	77.69	77.58	78.08	78.28	81.75	83.85	83.43
$E \rightarrow K$	86.64	87.37	86.63	87.87	88.16	83.35	90.80	87.88
$K \to B$	72.12	75.83	75.81	76.95	77.16	80.80	82.10	82.30
$K \to D$	75.79	78.05	78.53	79.11	79.89	82.10	82.05	83.07
$K \to E$	85.92	86.27	86.11	86.83	86.29	86.60	88.35	88.31
AVG	77.84	81.22	80.74	82.16	82.43	82.15	84.13	85.68

TM Explainability

PolitiFact									
	Tru	e		Fake					
Plain	times	Negated	times	Plain	times	Negated	times		
trump	297	candidate	529	congress	136	trump	1252		
said	290	debate	413	tax	104	profession	1226		
comment	112	civil	410	support	70	navigate	1223		
donald	110	reform	369	senate	64	hackings	1218		
story	78	congress	365	president	60	reported	1216		
medium	63	iraq	361	economic	57	arrest	1222		
president	48	lawsuit	351	americans	49	camps	1206		
reported	45	secretary	348	candidate	48	investigation	1159		
investigation	38	tax	332	debate	44	medium	1152		
domain	34	economy	321	federal	41	domain	1153		

Table 3: Top ten Literals captured by clauses of TM for PolitiFact.

GossipCop								
	ıe		Fake					
Plain	times	Negated	times	Plain	times	Negated	times	
source	357	stream	794	season	150	insider	918	
insider	152	aggregate	767	show	103	source	802	
rumors	86	bold	723	series	79	hollywood	802	
hollywood	80	refreshing	722	like	78	radar	646	
gossip	49	castmates	721	feature	70	cop	588	
relationship	37	judgment	720	video	44	publication	579	
claim	33	prank	719	said	33	exclusively	551	
split	32	poised	718	sexual	32	rumor	537	
radar	32	resilient	714	notification	25	recalls	535	
magazine	30	predicted	714	character	25	kardashian	525	

Table 4: Top ten Literals captured by clauses of TM for GossipCop.

Thank you!